Russian Journal of Organic Chemistry, Vol. 37, No. 1, 2001, pp. 125–127. Translated from Zhurnal Organicheskoi Khimii, Vol. 37, No. 1, 2001, pp. 135–136. Original Russian Text Copyright © 2001 by Akhmetvaleev, Baibulatova, Imaeva, Miftakhov.

## Prostanoids: LXXV. Synthesis of 4-Hydroxy-2-octyl-2-cyclopentenone\*

R. R. Akhmetvaleev, G. M. Baibulatova, L. R. Imaeva, and M. S. Miftakhov

Institute of Organic Chemistry, Ufa Research Center, Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, 450054 Bashkortostan, Russia fax: (3472)356066

Received August 12, 1999

**Abstract**—The title compound was synthesized by  $Ad_NE$  addition of *n*-octyl cuprate to 2,3-dichloro-4,4-ethylenedioxy-2-cyclopentenone, followed by alcoholysis and reduction with NaBH<sub>4</sub>.

The present communication reports on the transformation of readily accessible 2,3-dichloro-2-cyclopentene-1,4-dione monoacetal I [1] into 4-hydroxy-2-octyl-2-cyclopentenone (II) as key intermediate in the cuprate synthesis [2, 3] of 9-LO E-prostanoids [4, 5], specifically of 9-LO PGE<sub>1</sub> (Scheme 1).

The structure of molecule I, as concerns its topology and functionalization pattern, is favorable for preparation of compound II, and some efforts are to be made to introduce *n*-octyl side chain. We have solved this problem through 1,4-addition to enone I of a cuprate reagent prepared from *n*-octylmagnesium bromide and copper(I) iodide. As a result of smooth Ad<sub>N</sub>E reaction, substituted product **III** was obtained. Reduction of the ketone group in III with sodium tetrahydridoborate, followed by acid treatment of the reaction mixture, gave hydroxy ketone IV in an overall yield of 87%. However, our attempts to effect reductive dechlorination of IV with zinc in methanol led to isolation of an undesirable product, deoxycyclopentenone V (Scheme 2). We succeeded in obtaining the target product by changing the order of treatment of compoound III with reducing agents. When acetal

**III** was treated first with zinc in methanol and mixed acetal **VI** thus obtained was then reduced with NaBH<sub>4</sub>, the target 4-hydroxy-2-octyl-2-cyclopentenone (**II**) was synthesized in an overall yield of more than 20% (calculated on the initial dichlorocyclopentenone **I**).

## **EXPERIMENTAL**

The IR spectra were measured from thin films on a UR-20 spectrometer. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were taken on a Bruker AM-300 instrument at 300 and 75.47 MHz, respectively, using  $CDCl_3$  as solvent. The chemical shifts were measured relative to TMS.

2-Chloro-3-octyl-4,4-ethylenedioxy-2-cyclopentenone (III). To a solution of magnesium–cuprate reagent, prepared from 0.71 g (3.7 mmol) of CuI, 2.4 ml of a 1.68 N solution of  $C_8H_{17}MgBr$  in Et<sub>2</sub>O, and 5 ml of THF, we added with stirring at –10°C in an inert atmosphere a solution of 0.5 g (2.4 mmol) of enone I in 3 ml of THF. The mixture was stirred for 0.5 h at –10°C, decomposed with an aqueous solution of NH<sub>4</sub>Cl, and extracted with methylene chloride (3×20 ml). The extracts were dried over



This study was financially supported by the Russian Foundation for Basic Research (project no. 99-03-32916a).





MgSO<sub>4</sub> and evaporated, and the residue was subjected to chromatography on silica gel using pentane–ethyl acetate (1:1) as eluent. Yield 0.3 g (44%). IR spectrum, v, cm<sup>-1</sup>: 1650, 1750. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.85 t (3H, CH<sub>3</sub>), 1.20–1.45 m (10H, 5CH<sub>2</sub>), 1.55–1.75 m (2H, C<sup>7</sup>H<sub>2</sub>), 2.35–2.45 m (2H, C<sup>1</sup>H<sub>2</sub>), 2.66 s (2H, C<sup>9</sup>H<sub>2</sub>), 4.0–4.2 m (4H, 2CH<sub>2</sub>O). <sup>13</sup>C NMR spectrum,  $\delta_{\rm C}$ , ppm: 13.09 (C<sup>8</sup>), 22.55 (C<sup>7</sup>), 26.21 (C<sup>1</sup>), 27.23 (C<sup>2</sup>), 29.04 (C<sup>5</sup>), 29.10 (C<sup>4</sup>), 29.88 (C<sup>3</sup>), 31.73 (C<sup>6</sup>), 46.31 (C<sup>9</sup>), 65.99 (CH<sub>2</sub>O), 110.35 (C<sup>5</sup>), 135.21 (C<sup>7</sup>), 166.20 (C<sup>6</sup>), 195.19 (C<sup>8</sup>).

4-Hydroxy-2-octyl-3-chloro-2-cyclopentenone (IV). To a solution of 0.3 g of compound III in 10 ml of ethanol at  $0^{\circ}$ C we added 0.05 g of NaBH<sub>4</sub>. The mixture was stirred for 1 h, and 0.5 ml of AcOH was added. The mixture was evaporated, the residue was dissolved in 10 ml H<sub>2</sub>O, the product was extracted into methylene chloride  $(3 \times 20 \text{ ml})$ , the extract was dried over MgSO<sub>4</sub> and evaporated, and the residue was subjected to chromatography on silica gel using pentane-ethyl acetate (4:1) as eluent. Yield 0.22 g (87%). IR spectrum, v, cm<sup>-1</sup>: 1620, 1720, 3400. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.82 t (3H, CH<sub>3</sub>, J = 6.7 Hz), 1.1–1.5 m (12H, 6CH<sub>2</sub>), 2.2 t (2H, C<sup>1</sup>H), 2.43 d.d (1H, 5-H,  ${}^{2}J = 18$ ,  ${}^{3}J = 2$  Hz), 2.84 (1H, 5-H,  ${}^{2}J = 18$ ,  ${}^{3}J = 6.3$  Hz), 4.0–4.15 br.s (1H, OH), 4.73–4.83 m (1H, 4-H). <sup>13</sup>C NMR spectrum,  $\delta_{C}$ , ppm: 13.94 (C<sup>8</sup>), 22.51 (C<sup>7</sup>), 23.09 (C<sup>1</sup>), 26.84 (C<sup>2</sup>), 29.04  $(C^{5'})$ , 29.12  $(C^{4'})$ , 29.36  $(C^{3'})$ , 31.70  $(C^{6'})$ , 44.40  $(C^{5'})$ , 70.63 ( $C^4$ ), 142.98 ( $C^3$ ), 164.10 ( $C^2$ ), 201.70 ( $C^1$ ).

of ketone IV, 5 g of zinc dust, and 0.5 g of  $NH_4Cl$ in 20 ml of MeOH was heated under reflux with stirring for 1 h. The mixture was cooled and filtered, and the filtrate was evaporated. The residue was dissolved in 10 ml of H<sub>2</sub>O, and the solution was extracted with methylene chloride  $(3 \times 20 \text{ ml})$ . The combined extracts were dried over MgSO<sub>4</sub>, filtered, and evaporated. The residue was subjected to chromatography on silica gel using pentane-ethyl acetate (1:1) to isolate 0.21 g (53%) of compound V.  $R_f$  0.26. IR spectrum, v, cm<sup>-1</sup>: 1640, 1730. <sup>1</sup>H NMR spectrum, δ, ppm: 0.88 t (3H,  $CH_3$ , J = 7 Hz), 1.2–1.4 m (10H, 5 $CH_2$ ), 1.4–1.55 m (2H,  $C^{7}H_{2}$ ), 2.10–2.20 m (2H,  $C^{1}H$ ), 2.35–2.45 m (2H, 4-H), 2.50–2.60 m (2H, 5-H), 7.25–7.35 m (1H, 3-H). <sup>13</sup>C NMR spectrum,  $\delta_{C}$ , ppm: 14.14 (C<sup>8</sup>), 22.71  $(C^{7'})$ , 24.83  $(C^{1'})$ , 26.50  $(C^{2'})$ , 27.81  $(C^{5'})$ , 29.30  $(C^{4'})$ , 29.42 ( $C^{3}$ ), 29.47 ( $C^{6}$ ), 31.93 ( $C^{4}$ ), 34.67 ( $C^{5}$ ), 146.65 ( $C^2$ ), 157.31 ( $C^3$ ), 210.17 ( $C^1$ ).

2-Octyl-2-cyclopentenone (V). A mixture of 0.5 g

**4-(2-Hydroxyethyloxy)-4-methoxy-3-octyl-2-cyclopentenone (VI)** was synthesized from acetal **III** by the procedure described above for ketone **V**. Yield 43%, oily substance. IR spectrum, v, cm<sup>-1</sup>: 1640, 1730, 3030, 3600. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.80 t (3H, CH<sub>3</sub>, J = 7 Hz), 1.1–1.6 m (10H, 5CH<sub>2</sub>), 2.25– 2.45 m (2H, C<sup>1</sup>H), 2.57 s (2H, 5-H), 2.65–2.80 br.m (1H, OH), 3.23 s (3H, OMe), 3.45–3.75 m (4H, 2CH<sub>2</sub>O), 5.95 s (1H, 2-H). <sup>13</sup>C NMR spectrum,  $\delta_{C}$ , ppm: 13.99 (C<sup>8</sup>), 22.54 (C<sup>7</sup>), 26.79 (C<sup>1</sup>), 27.42 (C<sup>2</sup>), 29.09 (C<sup>5</sup>), 29.24 (C<sup>4</sup>), 29.35 (C<sup>3</sup>), 31.72 (C<sup>6</sup>), 43.33 (C<sup>5</sup>), 51.25 (OMe), 61.67 (CH<sub>2</sub>O), 65.54 (CH<sub>2</sub>O), 107.04 (C<sup>4</sup>), 130.76 (C<sup>3</sup>), 177.0 (C<sup>2</sup>), 202.55 (C<sup>1</sup>). **4-Hydroxy-2-octyl-2-cyclopentenone (II)** was synthesized by reduction of ketone **IV** with NaBH<sub>4</sub>, following the procedure described above for the synthesis of ketone **IV**. Yield 72%, oily substance. IR spectrum, v, cm<sup>-1</sup>: 1640, 1730, 3030, 3600. <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 0.84 t (3H, CH<sub>3</sub>, J = 7 Hz), 1.15–1.35 m (10H, 5CH<sub>2</sub>), 1.35–1.5 m (2H, C<sup>7</sup>H<sub>2</sub>), 2.05–2.2 m (2H, C<sup>1</sup>H), 2.27 d.d (1H, 5-H, J = 18.6, 6 Hz), 2.76 d.d (1H, 5-H, J = 18.6, 6 Hz), 3.05–3.30 br.m (1H, OH), 4.85–4.95 m (1H, 4-H), 7.1–7.15 (1H, 2-H). <sup>13</sup>C NMR spectrum,  $\delta_{\rm C}$ , ppm: 13.99 (C<sup>8</sup>), 22.55 (C<sup>7</sup>), 24.36 (C<sup>1</sup>), 27.36 (C<sup>2</sup>), 29.11 (C<sup>5</sup>), 29.24 (C<sup>4</sup>), 29.29 (C<sup>3</sup>), 32.10 (C<sup>6</sup>), 44.80 (C<sup>5</sup>), 68.26 (C<sup>4</sup>), 147.86 (C<sup>2</sup>), 156.26 (C<sup>3</sup>), 206.75 (C<sup>1</sup>).

## REFERENCES

- 1. Akhmetvaleev, R.R., Imaeva, L.R., Belogaeva, T.A., and Miftakhov, M.S., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1997, no. 9, pp. 1699–1701.
- 2. Mitra, A., *The Synthesis of Prostaglandin Derivatives*, Oxford: Pergamon, 1973, vol. 5, pp. 247–266.
- 3. Szantay, C. and Novak, L., *Synthesis of Prostaglandins*, Budapest: Akademia Kyado, 1978, pp. 144–158.
- 4. Miftakhov, M.S., Imaeva, L.R., Fatykhov, A.A., and Akhmetvaleev, R.R., *Russ. J. Org. Chem.*, 1997, vol. 33, no. 1, pp. 47–54.
- 5. Imaeva, L.R., Cand. Sci. (Chem.) Dissertation, Ufa, 1998.